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Abstract

A cold cranking test for 17 sealed lead-acid batteries with grids of lead—calcium alloy at —18 °C was performed at different discharge currents.
Time—voltage behavior of the batteries during 10 s discharge, voltage values at discharge times of 30, 60 and 90s, and time of discharge to reach
a final voltage of 6 V are critical points in the cold cranking test. These were modeled by artificial neural networks in MATLAB 7 media. Nine
discharge currents were used for the training set, five discharge currents for the prediction set and three discharge currents for the validation set.
Maximum prediction errors in the modeling of the time-voltage behavior during a 10 s discharge (model 1), the voltage of critical points of 30, 60,
90 s (model 2) and the time to reach a final voltage of 6 V (model 3) were under 3.1%, 3.3%, and 3.5%, respectively for each model. The results
obtained showed that the models can be used in the battery industry for the prediction of the cold cranking behavior of lead-acid batteries at high
discharge currents based on experimental cold cranking data at low discharge currents without the use of expensive and complex instruments. A
file (EXE file) based on the model obtained by WinNN 32 was prepared to enable inexpert operators in the lead-acid battery industry to use the

method.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

With ever increasing concerns over environmental protec-
tion, energy conservation and energy efficiency in recent years,
research and development on technology of various batteries is
being actively conducted. Due to its mature technology, lower
cost and modest performance, lead-acid batteries, are still widely
used in the most commercially available vehicles and other appli-
cations. Moreover, the present great foreseeable future, it is
almost impossible for other advanced batteries to replace lead-
acid batteries completely in vehicles.

Cold cranking amps (CCA) is a rating used in the battery
industry to define a battery’s ability to start an engine in cold
temperatures. CCA can be defined in different conditions. In
other words, any manufacturer or any standard can define the
CCA with different critical control values. For example, CCA
can be defined as a rating that in this rating, the current amount
in amp which, a new fully charged battery can deliver at 0 °F
(—18°C) for 30 s, while maintaining a voltage of at least 7.5V,
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for a 12V battery. The higher CCA rating shows the greater the
starting power of the battery. Because of the above mentioned
importance of cold cranking ability, it is seemed that modeling
and prediction of CCA for lead-acid batteries is very interest and
important.

Mathematical models of physical and chemical systems were
constructed to facilitate our understanding of mechanisms and to
lead to specific responses and to enable prediction of responses.
They are constructed in two basic frameworks: deductive (or
phenomenological) and inductive (or data based). Models are
built in the phenomenological framework in most areas of sci-
ence and engineering as a reflection of our desire to understand
the fundamental mechanisms underlying complex phenomena.
Inductive models are parametric frameworks with data based
selection or training of the parameters. They usually seek to
simulate excitation/response or input/output relations as inter-
polations among measured data, and they do so through adjust-
ment of their parameters in a training process. Artificial neural
networks (ANN) are frameworks that accomplish this type of
mapping.

At recent years, many attempts were concerned to use
of mathematical methods for modeling of some character-
istics of lead-acid batteries. Modeling of lead-acid batteries
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based on impedance measurements has become very impor-
tant recently with several groups reporting results in this area
[1-5].

Traditionally, the estimation of the battery available capacity
(BAC) under variable discharge currents has been presented by
the estimation of the battery state-of-charge (SOC). There are
many reports describing various attempts to estimate the SOC
using various computational approaches, the initial report about
the determination state-of-charge and state of health of batter-
ies by fuzzy logic methodology [6] was presented in 1999 in
Brighton, England. The other reports at this field were presented
in literature or meetings [7-11]. The major of earlier reports
were mainly concerned with small VRLA cells of 1-2.5 Ah
capacity. After that other experts reported an impedance mod-
eling of intermediate size lead-acid batteries used in army tanks
[12-14].

Some direct estimation methods of the BAC have ever been
explored. Recently, the estimation accuracy of the BAC has been
significantly improved using the artificial neural network model
[15]. For the variable discharge current, the published meth-
ods for the calculation of the BAC can be categorized into two
groups-either based on the average discharge current or based
on the reference discharge current [16—19].

At the recent decade, the artificial neural networks (ANNSs)
have been widely interested as a mathematical strong model for
some characteristics of lead-acid batteries [20-23].

Based on our best knowledge, there is only one report about
modeling of cold cranking test [24]. In the present work, the use
of ANNSs for the inductive modeling of input/output relations
in lead-acid batteries for knowing about the behavior of cold
cranking Amps (CCA) has been explained. The CCA compu-
tation model based on the artificial neural network (ANN) for
lead-acid batteries is presented. The results of experiments have
proven the further improvement of accuracy and precision with
the proposed model. The final models were used in WinNN
32 for making a EXE file for inexpert operators in industries
of lead-acid batteries in order to prediction of cold cranking
behavior at high discharge currents and in order to determine
of acceptable amount of CCA based on experimental low dis-
charge currents data for a lead-acid battery as a non-destructive
test.

2. Experimental
2.1. Reagents and materials

All material and reagents used in experiments were in indus-
trial grade and all of them were obtained from Iranian companies.
All sealed lead-acid batteries with capacity of 50 Ah used in the
study were produced by Sepahan Battery Co. (Isfahan, Iran).

2.2. Instrumental

Making of low temperature (—18°C) was carried out by
industrial freezer (ARMMD FB, Iran). Cold cranking tests were
performed by discharge instrument (HEW1500-12, Digatron,
Germany).

2.3. Methods

All sealed lead-acid batteries used in the study were the same
in open circuit voltage (OCV), weight, power and battery avail-
able capacity (BAC). Before performing of each cold cranking
test, each battery was hold at —18 °C for 24 h. Each battery was
used only for one discharge current in cold cranking test. At
a cold cranking test, first the battery was discharged under a
known constant discharge current (/) for 10s. The interval time
for reading of discharge voltage was 1 s. Second, the battery was
discharge under current of 0.61 (/=CCA) to reach final voltage
of 6 V. In second section, critical times for record of voltage
were 30, 60, 90 s and the time of reaching to 6 V. Three models
were separately used for first 10 s discharge data, critical voltage
of 30s (V30), 60s (Vo) and 90's (Vog) and for time of reaching
to final voltage of 6 V (fgv). Each modeling was performed by
nine discharge currents in training set, five discharge currents
in prediction set. The obtained models were validated by three
different discharge currents. All steps of modeling were carried
out in MATLAB 7 media.

The lead-acid battery with nominal voltage 12V is used for
exemplification, whose available capacity is 50 Ah at the 20h
discharge rate and temperature of 40 °C. For modeling of CCA at
constant temperature of —18 °C, different discharge currents are
selected to discharge the batteries, namely 50, 100, 150, 200, . . .
and 850 A. The cutoff voltage of 6 V is used for all discharges.
Based on the aforementioned conditions, the following test plans
are performed and last over 10 days, until a complete set of data
is collected.

The procedure had following steps:

1. Selection of 17 sealed lead-acid batteries, which are the same
in open circuit voltage (OCV), weight, power and battery
available capacity (BAC =50 Ah).

2. Charging of the batteries using the same charge algorithm
until the battery is fully charged.

3. Place the battery in the freezer for 24 h to have constant tem-
perature of 0 °F (—18°C).

4. Discharge of the battery at different currents for 10 s namely
50, 100, 150, ..., and 850 A (each battery use only for one
discharge current and the interval time for reading of dis-
charge voltage was 1 s).

5. After a rest for 10s, discharge of the battery by 0.6 x I,
namely 0.6 x 50A, 0.6 x I00A, 0.6 x 150A, ..., and
0.6 x 850 A (critical times for record of voltage are 30, 60,
90 s and the time of reaching to 6 V).

6. The important and interesting data on discharge time to reach-
ing final voltage of 6 V classified into three groups, and each
group of the data was separately modeled as following:

(a) Model 1 was used for first 10 s discharge data for different
discharge currents (/).

(b) Model 2 was used for critical voltages of 30s (V39), 60's
(Vo) and 90s (Vgo) under different discharge currents
(0.6 x I).

(c) Model 3 was used for time of reaching to final voltage of
6V (t6v) at different discharge currents.
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Fig. 1. Variation of (a) #sv and (b) log (t5v) with amount of discharge current
at cold cranking test (CCA).

7. The models obtained were used for making of an EXE file for
use in industrial laboratories for prediction of CCA amount of
a battery based on cold discharge data at many low discharge
currents (three or four low discharge currents for example
50, 100, 150 and 200 A).

It should be noted that in model 3, log (f5 v) was used for mod-
eling. Fig. 1 shows relation type of CCA-log (fgv) and CCA-tg .
To train the ANN model using the sigmoid transfer function
and a learning process will be carried out, which is achieved
by adapting the connection weights in response to a number of
training points of discharge current (/). The aim is to arrive at
a unique set of weights that are capable of correctly associat-
ing all the discharge currents with their desired voltages or time
(te v). The initial training of network was carried out by all data
including training and prediction sets for optimizing of learn-
ing rate and momentum. The training of network was controlled
by prediction error. After initial training, the model was trained
without prediction set with the same learning rate and momen-
tum for optimizing of weights and iterations. After this training,
the obtained model was used for prediction of data in prediction
set which this test is called as internal validation. At final step,
the model was employed for prediction of data in validation set
which this test is called as external validation. The final model
was used in Win NN 32 software for making of an EXE file for
use by inexpert operator in industries of lead-acid batteries. The
EXE file has been used in quality control laboratory of Aranniru
Battery Co. from 2003-10-29 for prediction of CCA amount for

lead-acid batteries and for accuracy test of CCA labeled in lead-
acid batteries, which are sent to the quality control laboratory.

3. Results and discussion

Cold temperatures dramatically reduce the effectiveness of
chemical reactions within the battery, while increasing the bat-
tery’s internal resistance, thus the cranking power will reduce
as temperatures drop. The vehicle performance in cold temper-
ature is strong relevant to the CCA, and the discharge current
has a significant effect on the CCA. In the other word, the bat-
tery cranking capacity (BCC) is the electrical charge that the
battery can deliver under the specified discharge current and the
reference time and temperature. It is determined by the avail-
able surface of active material contained in the battery and how
much of this material undergoes reaction before the battery can
no longer deliver the specified current at the cutoff voltage.
From its definition, the CCA is highly dependent on both the
discharge current and the temperature. A rapid increase in the
discharge current can severely reduce the BCC. There are two
major reasons. First, during a rapid discharge, the electrochemi-
cal reactions take place mostly on the surface of the plates due to
the limited time for the diffusion of the electrolyte into the pores
of the active material. Second the reaction product resulting from
a rapid discharge tends to close off the pores and further restrict
the ingress of the electrolyte. The CCA and BCC decrease with
temperature reduction. This is mainly due to the increment in
the viscosity of the electrolyte and a concomitant decrease in the
diffusion rate of ions to the reaction sites. Hence, it caused to
add the concentration polarization of the battery. In addition of
this increase in the concentration polarization, there is also an
increase in the electrode polarization, so that the battery cut off
voltage is reached earlier. Hence, less charge can be delivered
at a given discharge current.

Because of this fact that in major of international quality
control standards and quality control centers of lead-acid indus-
tries, all cranking tests are carried out at a constant temperature
of —18 °C for vehicle batteries, in this work, CCA is discussed
in the constant temperature as a cold cranking at — 18 °C. Really,
the proposed models only provide amounts of voltage at differ-
ent times of discharge and the time of reaching to final voltage
of 6V with respect to discharge current (CCA). The suitable
CCA for a battery should be selected with respect to the request
standard conditions about CCA. CCA is really a discharge cur-
rent at —18°C with respect to some critical conditions. For
example, in Iranian national standard [25], IEC [26] and Peu-
geot standard [27] following critical conditions is used for CCA
selection:

1. Discharge voltage of 10 s should not be lower than 7.5 V.

2. Time of reaching to discharge voltage of 6 V should not be
lower than 90's for small and medium batteries and not be
lower than 150 s for large batteries.

In initial modeling, we collect the data as following:
All batteries were discharged at different currents (/)
namely 50, 100, 150, ..., and 850 A for 10s. Each battery was
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Table 1
Experimental data for training, prediction and validation sets for model 1
Voltage (V) Current (A)

Training set Prediction set Validation set

50 150 250 350 450 550 600 700 850 100 300 400 650 800 200 500 750
Vi 11.77 1055 951 869 771 719 673 568 488 11.12  9.08 816 6.12 508 995 746 518
Vo 11.61 1040 938 862 7.66 7.14 6.69 563 482 1099 898 810 6.08 504 983 742 5.1
%) 1154 1032 933 860 764 7.2 6.66 559 477 10.91 895 808 6.06 499 977 740 5.06
Va 11.49 10.28  9.31 859 762 709 6.64 556 471 1086 893 807 6.03 494 974 738 5.02
Vs 11.45 1026 930 858 7.61 7.07 662 552 4.64 10.82 893 806 600 489 973 736 497
Ve 11.41 1024 929 858 759 705 659 548 457 1080 892 805 597 482 972 734 4091
V7 11.38 1023 929 857 758 7.02 657 544 448 10.78 892 803 594 471 971 733 485
Vg 11.35 1022 928 856 756 7.00 655 539 437 10.77 891 802 591 449 970 731 476
Vo 11.33 1022 928 856 754 698 652 533 360 1077 891 801 587 394 970 729 442
Vio 1132 1022 928 855 753 695 650 526 280 1076 890 800 583 344 9.69 727 4.08
Table 2
Experimental data for training, prediction and validation sets for model 2
Voltage (V) Current (A)

Training set Prediction set Validation set

50 150 250 350 450 550 600 750 850 100 300 400 650 800 200 500 700
V3o 11.50 1090 10.16 9.65 894 847 823 520 380 I1.16 991 925 7.64 450 1043 874 7.14
Veo 11.49 1077 10.10 930 748 682 59 180 0 11.15 983 868 436 0 1039 7.14 3.5
Voo 1148 1076 10.03 9.10 6.17 486 350 O 0 11.14 974 637 220 O 1035 560 1.50

only used for one discharge current and the interval time for
reading of discharge voltage was 1s. After discharge of 10s,
each battery was placed on rest position for 10s. Then, they
were discharged by currents of 0.6 x I, namely 0.6 x 50 A,
0.6 x 100 A, 0.6 x 150 A, ..., and 0.6 x 850 A until reaching
to final voltage of 6 V. Each battery was only used for one
corresponding discharge current and the interval time for
reading of discharge voltage was 1 s.

After collecting all data, we tried to use only one model for
all data. But, training of the network took a very long time and
the prediction errors were high and they were not acceptable.
Therefore, we classified the data into three groups and used a
separate model for each group as following:

(1) Model 1 was used for first 10s discharge data, which it
discharged under different constant currents (/).

(2) Model 2 was used for critical voltages of 30s (V30p), 60s
(Veo) and 90s (Vgg) under different discharge currents
(0.6 x I).

(3) Model 3 was used for time of reaching to final voltage of
6V (tsv) at different discharge currents.

Table 3
Experimental data for training, prediction and validation sets for model 3

It should be mentioned that the model 3 was trained by
using of log (#5v). Because, current of cold discharge has a sig-
moid relation only with log (#5v). The relationship between cold
cranking Amps (CCA) and time of reaching to cutoff voltage of
6V (t6v), and also cold cranking Amps (CCA) with log (#5v)
were shown in Fig. 1. As itis seen from Fig. 1, CCA has a expo-
nential relation with (f¢v) and a sigmoid relation with log (#5v).
Initial studies showed that use of sigmoid transfer function for
model 3 as for other models (1 and 2) had more ability and lower
prediction errors.

All of three models are used for one aim, which is ensur-
ing some data in fastest time; they propel us to cold cranking
behavior, according to international standards. It should be noted
that accuracy of the ANN model can be improved further by
increasing the number of neurons and layers, but sacrificing
the computational speed and implementation simplicity. So, the
achievable accuracy is compromise result, which is acceptable
as far as the engineering point of view, for calculation of the
CCA, is concerned.

The experimental data in training, prediction and validation
sets for models 1, 2 and 3 were shown at Tables 1-3, respec-

Voltage (V)  Current (A)

Training set

Prediction set Validation set

50 150 300 450 500 550 650

700

850 100 250 400 600 750 200 350 800

log (tev) 3497 2715 2281 1968 1.908 1.845 1.681

1.568

0 2.878 2401 2000 1.771 1.515 2484 2176 1.176
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tively. The prediction error was used as a tool for controlling
of training. The model with lowest prediction error was used as
final and optimum model. Table 4 shows the architectures and
specifications of the optimized ANNs.

After training process of the each model, it was used for pre-
diction of cold cranking behavior of the batteries at five different
discharge currents in the prediction set as an internal validation.
Fig. 2 shows variation of predicted data verses experimental data
for model 1 in prediction set at discharge currents of (a) 100, (b)
300, (c) 400, (d) 650 and (e) 800 A. Variations of predicted volt-
ages versus experimental voltages for model 2 in prediction set
for discharge times of (a) 30 s, (b) 60 s and (c) 90 s were shown in
Fig. 3. Fig. 4 shows the variation of predicted 7y verses exper-

Table 4

Architecture and specification of the generated ANNs

Model 1 2 3

No. of nodes in the input layer 1 1 1

No. of nodes in the hidden layer 7 8 3

No. of nodes in the output layer 10 3 1
Learning rate 0.1 0.1 0.1
Momentum 0.1 0.1 0.1
Number of epochs 130000 60000 13000
Transfer function Sigmoid Sigmoid Sigmoid

Models 1, 2 and 3 were used for cold cranking behavior at first 10 s of discharge,
operation voltage at discharge times of 30, 60 and 90 and times of reaching to
final voltage of 6 V, respectively. (No biases in input and output layer).
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Fig. 3. Variations of predicted voltages vs. experimental voltages for model 2 in prediction set for discharge times of (a) 30's, (b) 60s and (c) 90s.

imental fgv at different discharge currents. As it is seen from
these figures, the prediction data has a good compatibility with
the corresponding experimental data. Then, the models can be
used with low prediction error for prediction of CCA.

After testing of the models by internal validation in predic-
tion data set, the proposed models were tested by three different
discharge currents in validation set as an external validation.
Fig. 5 shows ability of model 1 in prediction of battery voltage
during 10 s discharge at currents of 200, 500 and 750 A. As it is
seen from Fig. 5, the predicted and experimental time—voltage
behaviors of batteries during 10s discharge at different dis-
charge currents are very similar. Maximum prediction error was
lower than 3.1%. Thus, the model 1 can be successfully used for
prediction of time-voltage behavior during cold discharge and
prediction of voltage at time of 10s (Vip).
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Fig. 4. Variations of predicted voltages vs. experimental voltages for model 3
in prediction set.

Model 2 was used for prediction of voltage at discharge
times of 30, 60 and 90 s in validation set as an external vali-
dation. Amounts of predicted voltages at critical points (V3q,
Vso and Vgg) versus corresponding experimental values were
plot in Fig. 6. As Fig. 6 shows, the model 2 is very useful and
capable for prediction of critical voltage at cold cranking test.
The prediction error for model 2 at maximum amount was lower
than 3.3%.

Model 3 was employed for prediction of time of reaching to
cutoff voltage of 6 V (#5v). Sigmoid transfer function was used
for successful modeling and prediction of #¢y. Fig. 7 plots the
relation between predicted gy and experimental #¢v at valida-
tion set. Asitis seen from this figure, model 3 can be successfully
used for prediction of tgv at different cold discharge currents
with prediction error lower than 3.5%.

Table 5 shows maximum prediction error in prediction and
validation sets. As it is seen from Table 5, there is a good
agreement between experimental data and predicted data. The
prediction error of 10% or lower is acceptable for ANN models.

It is explicit that the three proposed ANN models exhibit a
high accuracy for prediction of the CCA and they are not very
demanding in computational effort; once the ANN model has

Table 5
Maximum prediction errors (%) of the proposed ANN models for prediction
and validation sets

Model 1 2 3
Prediction set 5.59 3.46 1.55
Validation set 3.05 3.27 3.44
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been trained. The obtained results showed that the model can be
used in battery industries for prediction of cold cranking behav-
ior of the lead-acid batteries at high discharge current based on
experimental cold cranking data at low discharge currents with-
out using of expensive and complex instruments. Also, during

350
300
250
200
150
100

50

0 | 1 1 1 . |

100 150 200 250 300

Experimental tgy (S)

Predicted tsv (s)

350

Fig. 7. Variation of predicted #5 v vs. experimental 7y for model 3 in validation
set.

the modeling process, the ANN model structure for calculation
of CCA is independent of the lead-acid battery type, so the pro-
posed modeling approach can readily be extended to all types of
lead-acid batteries, provided that the corresponding experimen-
tal data are available for training an appropriate ANN model.

4. Prediction of suitable CCA for a battery

The final models were used in WinNN 32 for making a EXE
file (a program for CCA Prediction) for inexpert operators in
industries of lead-acid batteries in order to prediction of cold
cranking behavior at high discharge currents and in order to
prediction of suitable CCA for a battery based on experimental
low discharge currents data as following:

The program retrains the models with new data corresponded
to three or four low discharge currents, which have been car-
ried out in the factory. Then, operator should experimentally
check the battery behavior at four or at least three discharge cur-
rents (for example 50, 100 and 150 A), then he should train each
model with these data. Finally, the operator checks the predic-
tion of models for a proposed discharge current. Operator can
input this discharge current as CCA based on guesswork, and
the models predict the battery behavior with the input CCA. If
the critical conditions of CCA corresponding to the acceptable
standard of the factory are provided, the operator selects this
discharge current as CCA. If the predicted amounts of critical
points are lower than the factory standard, operator will input
the lower discharge current into the models until to reach the
highest discharge current which can provides the factory stan-
dard conditions. Fig. 8 shows the manner that an operator can
predict suitable CCA for a lead-acid battery.
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Fig. 8. The schematic manner for the determination of suitable CCA for a lead-
acid battery.

5. Conclusions

Cold cranking behavior of lead-acid batteries can be modeled
by artificial neural networks (ANNs). Three models were opti-
mized for prediction of a complete CCA test. The models can be
used successfully for prediction of time-voltage behavior dur-
ing the first 10 s discharge with CCA, for prediction of critical
voltages of 30 s (V39), 60's (Veo), 90 s (Voo) and for prediction of
time of reaching to cutoff voltage of 6 V. The optimized models
were used for making an EXE file (operating program) for use in
quality control centers of lead-acid industries. The program can
be used by inexpert operators for prediction of battery behavior
at cold discharge of battery at a high current and or for determi-

nation of suitable CCA amount for a lead-acid battery based on
data at low currents of cold discharge.
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