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bstract

A cold cranking test for 17 sealed lead-acid batteries with grids of lead–calcium alloy at −18 ◦C was performed at different discharge currents.
ime–voltage behavior of the batteries during 10 s discharge, voltage values at discharge times of 30, 60 and 90 s, and time of discharge to reach
final voltage of 6 V are critical points in the cold cranking test. These were modeled by artificial neural networks in MATLAB 7 media. Nine
ischarge currents were used for the training set, five discharge currents for the prediction set and three discharge currents for the validation set.
aximum prediction errors in the modeling of the time-voltage behavior during a 10 s discharge (model 1), the voltage of critical points of 30, 60,

0 s (model 2) and the time to reach a final voltage of 6 V (model 3) were under 3.1%, 3.3%, and 3.5%, respectively for each model. The results

btained showed that the models can be used in the battery industry for the prediction of the cold cranking behavior of lead-acid batteries at high
ischarge currents based on experimental cold cranking data at low discharge currents without the use of expensive and complex instruments. A
le (EXE file) based on the model obtained by WinNN 32 was prepared to enable inexpert operators in the lead-acid battery industry to use the
ethod.
2005 Elsevier B.V. All rights reserved.
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. Introduction

With ever increasing concerns over environmental protec-
ion, energy conservation and energy efficiency in recent years,
esearch and development on technology of various batteries is
eing actively conducted. Due to its mature technology, lower
ost and modest performance, lead-acid batteries, are still widely
sed in the most commercially available vehicles and other appli-
ations. Moreover, the present great foreseeable future, it is
lmost impossible for other advanced batteries to replace lead-
cid batteries completely in vehicles.

Cold cranking amps (CCA) is a rating used in the battery
ndustry to define a battery’s ability to start an engine in cold
emperatures. CCA can be defined in different conditions. In
ther words, any manufacturer or any standard can define the
CA with different critical control values. For example, CCA

an be defined as a rating that in this rating, the current amount
n amp which, a new fully charged battery can deliver at 0 ◦F
−18 ◦C) for 30 s, while maintaining a voltage of at least 7.5 V,

∗ Corresponding author. Fax: +98 21 6427263.
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batteries

or a 12 V battery. The higher CCA rating shows the greater the
tarting power of the battery. Because of the above mentioned
mportance of cold cranking ability, it is seemed that modeling
nd prediction of CCA for lead-acid batteries is very interest and
mportant.

Mathematical models of physical and chemical systems were
onstructed to facilitate our understanding of mechanisms and to
ead to specific responses and to enable prediction of responses.
hey are constructed in two basic frameworks: deductive (or
henomenological) and inductive (or data based). Models are
uilt in the phenomenological framework in most areas of sci-
nce and engineering as a reflection of our desire to understand
he fundamental mechanisms underlying complex phenomena.
nductive models are parametric frameworks with data based
election or training of the parameters. They usually seek to
imulate excitation/response or input/output relations as inter-
olations among measured data, and they do so through adjust-
ent of their parameters in a training process. Artificial neural

etworks (ANN) are frameworks that accomplish this type of

apping.
At recent years, many attempts were concerned to use

f mathematical methods for modeling of some character-
stics of lead-acid batteries. Modeling of lead-acid batteries
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ased on impedance measurements has become very impor-
ant recently with several groups reporting results in this area
1–5].

Traditionally, the estimation of the battery available capacity
BAC) under variable discharge currents has been presented by
he estimation of the battery state-of-charge (SOC). There are

any reports describing various attempts to estimate the SOC
sing various computational approaches, the initial report about
he determination state-of-charge and state of health of batter-
es by fuzzy logic methodology [6] was presented in 1999 in
righton, England. The other reports at this field were presented

n literature or meetings [7–11]. The major of earlier reports
ere mainly concerned with small VRLA cells of 1–2.5 Ah

apacity. After that other experts reported an impedance mod-
ling of intermediate size lead-acid batteries used in army tanks
12–14].

Some direct estimation methods of the BAC have ever been
xplored. Recently, the estimation accuracy of the BAC has been
ignificantly improved using the artificial neural network model
15]. For the variable discharge current, the published meth-
ds for the calculation of the BAC can be categorized into two
roups-either based on the average discharge current or based
n the reference discharge current [16–19].

At the recent decade, the artificial neural networks (ANNs)
ave been widely interested as a mathematical strong model for
ome characteristics of lead-acid batteries [20–23].

Based on our best knowledge, there is only one report about
odeling of cold cranking test [24]. In the present work, the use

f ANNs for the inductive modeling of input/output relations
n lead-acid batteries for knowing about the behavior of cold
ranking Amps (CCA) has been explained. The CCA compu-
ation model based on the artificial neural network (ANN) for
ead-acid batteries is presented. The results of experiments have
roven the further improvement of accuracy and precision with
he proposed model. The final models were used in WinNN
2 for making a EXE file for inexpert operators in industries
f lead-acid batteries in order to prediction of cold cranking
ehavior at high discharge currents and in order to determine
f acceptable amount of CCA based on experimental low dis-
harge currents data for a lead-acid battery as a non-destructive
est.

. Experimental

.1. Reagents and materials

All material and reagents used in experiments were in indus-
rial grade and all of them were obtained from Iranian companies.
ll sealed lead-acid batteries with capacity of 50 Ah used in the

tudy were produced by Sepahan Battery Co. (Isfahan, Iran).

.2. Instrumental
Making of low temperature (−18 ◦C) was carried out by
ndustrial freezer (ARMMD FB, Iran). Cold cranking tests were
erformed by discharge instrument (HEW1500-12, Digatron,
ermany).
Sources 158 (2006) 936–943 937

.3. Methods

All sealed lead-acid batteries used in the study were the same
n open circuit voltage (OCV), weight, power and battery avail-
ble capacity (BAC). Before performing of each cold cranking
est, each battery was hold at −18 ◦C for 24 h. Each battery was
sed only for one discharge current in cold cranking test. At
cold cranking test, first the battery was discharged under a

nown constant discharge current (I) for 10 s. The interval time
or reading of discharge voltage was 1 s. Second, the battery was
ischarge under current of 0.6I (I = CCA) to reach final voltage
f 6 V. In second section, critical times for record of voltage
ere 30, 60, 90 s and the time of reaching to 6 V. Three models
ere separately used for first 10 s discharge data, critical voltage
f 30 s (V30), 60 s (V60) and 90 s (V90) and for time of reaching
o final voltage of 6 V (t6 V). Each modeling was performed by
ine discharge currents in training set, five discharge currents
n prediction set. The obtained models were validated by three
ifferent discharge currents. All steps of modeling were carried
ut in MATLAB 7 media.

The lead-acid battery with nominal voltage 12 V is used for
xemplification, whose available capacity is 50 Ah at the 20 h
ischarge rate and temperature of 40 ◦C. For modeling of CCA at
onstant temperature of −18 ◦C, different discharge currents are
elected to discharge the batteries, namely 50, 100, 150, 200, . . .
nd 850 A. The cutoff voltage of 6 V is used for all discharges.
ased on the aforementioned conditions, the following test plans
re performed and last over 10 days, until a complete set of data
s collected.

The procedure had following steps:

. Selection of 17 sealed lead-acid batteries, which are the same
in open circuit voltage (OCV), weight, power and battery
available capacity (BAC = 50 Ah).

. Charging of the batteries using the same charge algorithm
until the battery is fully charged.

. Place the battery in the freezer for 24 h to have constant tem-
perature of 0 ◦F (−18 ◦C).

. Discharge of the battery at different currents for 10 s namely
50, 100, 150, . . ., and 850 A (each battery use only for one
discharge current and the interval time for reading of dis-
charge voltage was 1 s).

. After a rest for 10 s, discharge of the battery by 0.6 × Icc,
namely 0.6 × 50 A, 0.6 × 100 A, 0.6 × 150 A, . . ., and
0.6 × 850 A (critical times for record of voltage are 30, 60,
90 s and the time of reaching to 6 V).

. The important and interesting data on discharge time to reach-
ing final voltage of 6 V classified into three groups, and each
group of the data was separately modeled as following:
(a) Model 1 was used for first 10 s discharge data for different

discharge currents (I).
(b) Model 2 was used for critical voltages of 30 s (V30), 60 s
(V60) and 90 s (V60) under different discharge currents
(0.6 × I).

(c) Model 3 was used for time of reaching to final voltage of
6 V (t6 V) at different discharge currents.
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ig. 1. Variation of (a) t6 V and (b) log (t6 V) with amount of discharge current
t cold cranking test (CCA).

. The models obtained were used for making of an EXE file for
use in industrial laboratories for prediction of CCA amount of
a battery based on cold discharge data at many low discharge
currents (three or four low discharge currents for example
50, 100, 150 and 200 A).

It should be noted that in model 3, log (t6 V) was used for mod-
ling. Fig. 1 shows relation type of CCA-log (t6 V) and CCA-t6 V.
o train the ANN model using the sigmoid transfer function
nd a learning process will be carried out, which is achieved
y adapting the connection weights in response to a number of
raining points of discharge current (I). The aim is to arrive at
unique set of weights that are capable of correctly associat-

ng all the discharge currents with their desired voltages or time
t6 V). The initial training of network was carried out by all data
ncluding training and prediction sets for optimizing of learn-
ng rate and momentum. The training of network was controlled
y prediction error. After initial training, the model was trained
ithout prediction set with the same learning rate and momen-

um for optimizing of weights and iterations. After this training,
he obtained model was used for prediction of data in prediction
et which this test is called as internal validation. At final step,
he model was employed for prediction of data in validation set
hich this test is called as external validation. The final model

as used in Win NN 32 software for making of an EXE file for
se by inexpert operator in industries of lead-acid batteries. The
XE file has been used in quality control laboratory of Aranniru
attery Co. from 2003-10-29 for prediction of CCA amount for n
Sources 158 (2006) 936–943

ead-acid batteries and for accuracy test of CCA labeled in lead-
cid batteries, which are sent to the quality control laboratory.

. Results and discussion

Cold temperatures dramatically reduce the effectiveness of
hemical reactions within the battery, while increasing the bat-
ery’s internal resistance, thus the cranking power will reduce
s temperatures drop. The vehicle performance in cold temper-
ture is strong relevant to the CCA, and the discharge current
as a significant effect on the CCA. In the other word, the bat-
ery cranking capacity (BCC) is the electrical charge that the
attery can deliver under the specified discharge current and the
eference time and temperature. It is determined by the avail-
ble surface of active material contained in the battery and how
uch of this material undergoes reaction before the battery can

o longer deliver the specified current at the cutoff voltage.
rom its definition, the CCA is highly dependent on both the
ischarge current and the temperature. A rapid increase in the
ischarge current can severely reduce the BCC. There are two
ajor reasons. First, during a rapid discharge, the electrochemi-

al reactions take place mostly on the surface of the plates due to
he limited time for the diffusion of the electrolyte into the pores
f the active material. Second the reaction product resulting from
rapid discharge tends to close off the pores and further restrict

he ingress of the electrolyte. The CCA and BCC decrease with
emperature reduction. This is mainly due to the increment in
he viscosity of the electrolyte and a concomitant decrease in the
iffusion rate of ions to the reaction sites. Hence, it caused to
dd the concentration polarization of the battery. In addition of
his increase in the concentration polarization, there is also an
ncrease in the electrode polarization, so that the battery cut off
oltage is reached earlier. Hence, less charge can be delivered
t a given discharge current.

Because of this fact that in major of international quality
ontrol standards and quality control centers of lead-acid indus-
ries, all cranking tests are carried out at a constant temperature
f −18 ◦C for vehicle batteries, in this work, CCA is discussed
n the constant temperature as a cold cranking at −18 ◦C. Really,
he proposed models only provide amounts of voltage at differ-
nt times of discharge and the time of reaching to final voltage
f 6 V with respect to discharge current (CCA). The suitable
CA for a battery should be selected with respect to the request

tandard conditions about CCA. CCA is really a discharge cur-
ent at −18 ◦C with respect to some critical conditions. For
xample, in Iranian national standard [25], IEC [26] and Peu-
eot standard [27] following critical conditions is used for CCA
election:

. Discharge voltage of 10 s should not be lower than 7.5 V.

. Time of reaching to discharge voltage of 6 V should not be
lower than 90 s for small and medium batteries and not be
lower than 150 s for large batteries.
In initial modeling, we collect the data as following:
All batteries were discharged at different currents (I)

amely 50, 100, 150, . . ., and 850 A for 10 s. Each battery was
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Table 1
Experimental data for training, prediction and validation sets for model 1

Voltage (V) Current (A)

Training set Prediction set Validation set

50 150 250 350 450 550 600 700 850 100 300 400 650 800 200 500 750

V1 11.77 10.55 9.51 8.69 7.71 7.19 6.73 5.68 4.88 11.12 9.08 8.16 6.12 5.08 9.95 7.46 5.18
V2 11.61 10.40 9.38 8.62 7.66 7.14 6.69 5.63 4.82 10.99 8.98 8.10 6.08 5.04 9.83 7.42 5.11
V3 11.54 10.32 9.33 8.60 7.64 7.12 6.66 5.59 4.77 10.91 8.95 8.08 6.06 4.99 9.77 7.40 5.06
V4 11.49 10.28 9.31 8.59 7.62 7.09 6.64 5.56 4.71 10.86 8.93 8.07 6.03 4.94 9.74 7.38 5.02
V5 11.45 10.26 9.30 8.58 7.61 7.07 6.62 5.52 4.64 10.82 8.93 8.06 6.00 4.89 9.73 7.36 4.97
V6 11.41 10.24 9.29 8.58 7.59 7.05 6.59 5.48 4.57 10.80 8.92 8.05 5.97 4.82 9.72 7.34 4.91
V7 11.38 10.23 9.29 8.57 7.58 7.02 6.57 5.44 4.48 10.78 8.92 8.03 5.94 4.71 9.71 7.33 4.85
V8 11.35 10.22 9.28 8.56 7.56 7.00 6.55 5.39 4.37 10.77 8.91 8.02 5.91 4.49 9.70 7.31 4.76
V9 11.33 10.22 9.28 8.56 7.54 6.98 6.52 5.33 3.60 10.77 8.91 8.01 5.87 3.94 9.70 7.29 4.42
V10 11.32 10.22 9.28 8.55 7.53 6.95 6.50 5.26 2.80 10.76 8.90 8.00 5.83 3.44 9.69 7.27 4.08

Table 2
Experimental data for training, prediction and validation sets for model 2

Voltage (V) Current (A)

Training set Prediction set Validation set

50 150 250 350 450 550 600 750 850 100 300 400 650 800 200 500 700

V .20
V .80
V

o
r
e
w
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t
c
r

a
t
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s
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30 11.50 10.90 10.16 9.65 8.94 8.47 8.23 5

60 11.49 10.77 10.10 9.30 7.48 6.82 5.96 1

90 11.48 10.76 10.03 9.10 6.17 4.86 3.50 0

nly used for one discharge current and the interval time for
eading of discharge voltage was 1 s. After discharge of 10 s,
ach battery was placed on rest position for 10 s. Then, they
ere discharged by currents of 0.6 × I, namely 0.6 × 50 A,
.6 × 100 A, 0.6 × 150 A, . . ., and 0.6 × 850 A until reaching
o final voltage of 6 V. Each battery was only used for one
orresponding discharge current and the interval time for
eading of discharge voltage was 1 s.

After collecting all data, we tried to use only one model for
ll data. But, training of the network took a very long time and
he prediction errors were high and they were not acceptable.
herefore, we classified the data into three groups and used a
eparate model for each group as following:

1) Model 1 was used for first 10 s discharge data, which it
discharged under different constant currents (I).

2) Model 2 was used for critical voltages of 30 s (V30), 60 s

(V60) and 90 s (V90) under different discharge currents
(0.6 × I).

3) Model 3 was used for time of reaching to final voltage of
6 V (t6 V) at different discharge currents.

a
C

s

able 3
xperimental data for training, prediction and validation sets for model 3

oltage (V) Current (A)

Training set

50 150 300 450 500 550 650 700

og (t6 V) 3.497 2.715 2.281 1.968 1.908 1.845 1.681 1.568
3.80 11.16 9.91 9.25 7.64 4.50 10.43 8.74 7.14
0 11.15 9.83 8.68 4.36 0 10.39 7.14 3.75
0 11.14 9.74 6.37 2.20 0 10.35 5.60 1.50

It should be mentioned that the model 3 was trained by
sing of log (t6 V). Because, current of cold discharge has a sig-
oid relation only with log (t6 V). The relationship between cold

ranking Amps (CCA) and time of reaching to cutoff voltage of
V (t6 V), and also cold cranking Amps (CCA) with log (t6 V)
ere shown in Fig. 1. As it is seen from Fig. 1, CCA has a expo-
ential relation with (t6 V) and a sigmoid relation with log (t6 V).
nitial studies showed that use of sigmoid transfer function for
odel 3 as for other models (1 and 2) had more ability and lower

rediction errors.
All of three models are used for one aim, which is ensur-

ng some data in fastest time; they propel us to cold cranking
ehavior, according to international standards. It should be noted
hat accuracy of the ANN model can be improved further by
ncreasing the number of neurons and layers, but sacrificing
he computational speed and implementation simplicity. So, the
chievable accuracy is compromise result, which is acceptable

s far as the engineering point of view, for calculation of the
CA, is concerned.

The experimental data in training, prediction and validation
ets for models 1, 2 and 3 were shown at Tables 1–3, respec-

Prediction set Validation set

850 100 250 400 600 750 200 350 800

0 2.878 2.401 2.000 1.771 1.515 2.484 2.176 1.176
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Table 4
Architecture and specification of the generated ANNs

Model 1 2 3

No. of nodes in the input layer 1 1 1
No. of nodes in the hidden layer 7 8 3
No. of nodes in the output layer 10 3 1
Learning rate 0.1 0.1 0.1
Momentum 0.1 0.1 0.1
Number of epochs 130000 60000 13000
Transfer function Sigmoid Sigmoid Sigmoid

F
p

40 H. Karami et al. / Journal of P

ively. The prediction error was used as a tool for controlling
f training. The model with lowest prediction error was used as
nal and optimum model. Table 4 shows the architectures and
pecifications of the optimized ANNs.

After training process of the each model, it was used for pre-
iction of cold cranking behavior of the batteries at five different
ischarge currents in the prediction set as an internal validation.
ig. 2 shows variation of predicted data verses experimental data
or model 1 in prediction set at discharge currents of (a) 100, (b)

00, (c) 400, (d) 650 and (e) 800 A. Variations of predicted volt-
ges versus experimental voltages for model 2 in prediction set
or discharge times of (a) 30 s, (b) 60 s and (c) 90 s were shown in
ig. 3. Fig. 4 shows the variation of predicted t6 V verses exper-

Models 1, 2 and 3 were used for cold cranking behavior at first 10 s of discharge,
operation voltage at discharge times of 30, 60 and 90 and times of reaching to
final voltage of 6 V, respectively. (No biases in input and output layer).

ig. 2. Variation of predicted voltages vs. experimental voltages for discharge current of (a) 100 A, (b) 300 A, (c) 400 A, (d) 650 A and (e) 800 A for model 1 in
rediction set.
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Fig. 3. Variations of predicted voltages vs. experimental voltages for m

mental t6 V at different discharge currents. As it is seen from
hese figures, the prediction data has a good compatibility with
he corresponding experimental data. Then, the models can be
sed with low prediction error for prediction of CCA.

After testing of the models by internal validation in predic-
ion data set, the proposed models were tested by three different
ischarge currents in validation set as an external validation.
ig. 5 shows ability of model 1 in prediction of battery voltage
uring 10 s discharge at currents of 200, 500 and 750 A. As it is
een from Fig. 5, the predicted and experimental time–voltage
ehaviors of batteries during 10 s discharge at different dis-

harge currents are very similar. Maximum prediction error was
ower than 3.1%. Thus, the model 1 can be successfully used for
rediction of time-voltage behavior during cold discharge and
rediction of voltage at time of 10 s (V10).

ig. 4. Variations of predicted voltages vs. experimental voltages for model 3
n prediction set.
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V

2 in prediction set for discharge times of (a) 30 s, (b) 60 s and (c) 90 s.

Model 2 was used for prediction of voltage at discharge
imes of 30, 60 and 90 s in validation set as an external vali-
ation. Amounts of predicted voltages at critical points (V30,
60 and V90) versus corresponding experimental values were
lot in Fig. 6. As Fig. 6 shows, the model 2 is very useful and
apable for prediction of critical voltage at cold cranking test.
he prediction error for model 2 at maximum amount was lower

han 3.3%.
Model 3 was employed for prediction of time of reaching to

utoff voltage of 6 V (t6 V). Sigmoid transfer function was used
or successful modeling and prediction of t6 V. Fig. 7 plots the
elation between predicted t6 V and experimental t6 V at valida-
ion set. As it is seen from this figure, model 3 can be successfully
sed for prediction of t6 V at different cold discharge currents
ith prediction error lower than 3.5%.
Table 5 shows maximum prediction error in prediction and

alidation sets. As it is seen from Table 5, there is a good
greement between experimental data and predicted data. The

rediction error of 10% or lower is acceptable for ANN models.

It is explicit that the three proposed ANN models exhibit a
igh accuracy for prediction of the CCA and they are not very
emanding in computational effort; once the ANN model has

able 5
aximum prediction errors (%) of the proposed ANN models for prediction

nd validation sets

odel 1 2 3

rediction set 5.59 3.46 1.55
alidation set 3.05 3.27 3.44
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Fig. 5. Comparison of predicted time-voltage behavior and experimental data for mod
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ig. 6. Variation of predicted voltage vs. experimental voltage at different dis-
harge currents and different discharge time for model 2 in validation data set.

een trained. The obtained results showed that the model can be
sed in battery industries for prediction of cold cranking behav-

or of the lead-acid batteries at high discharge current based on
xperimental cold cranking data at low discharge currents with-
ut using of expensive and complex instruments. Also, during

ig. 7. Variation of predicted t6 V vs. experimental t6 V for model 3 in validation
et.

t
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el 1 at discharge current of (a) 200 A, (b) 500 A and (c) 750 A in validation set.

he modeling process, the ANN model structure for calculation
f CCA is independent of the lead-acid battery type, so the pro-
osed modeling approach can readily be extended to all types of
ead-acid batteries, provided that the corresponding experimen-
al data are available for training an appropriate ANN model.

. Prediction of suitable CCA for a battery

The final models were used in WinNN 32 for making a EXE
le (a program for CCA Prediction) for inexpert operators in

ndustries of lead-acid batteries in order to prediction of cold
ranking behavior at high discharge currents and in order to
rediction of suitable CCA for a battery based on experimental
ow discharge currents data as following:

The program retrains the models with new data corresponded
o three or four low discharge currents, which have been car-
ied out in the factory. Then, operator should experimentally
heck the battery behavior at four or at least three discharge cur-
ents (for example 50, 100 and 150 A), then he should train each
odel with these data. Finally, the operator checks the predic-

ion of models for a proposed discharge current. Operator can
nput this discharge current as CCA based on guesswork, and
he models predict the battery behavior with the input CCA. If
he critical conditions of CCA corresponding to the acceptable
tandard of the factory are provided, the operator selects this
ischarge current as CCA. If the predicted amounts of critical
oints are lower than the factory standard, operator will input

he lower discharge current into the models until to reach the
ighest discharge current which can provides the factory stan-
ard conditions. Fig. 8 shows the manner that an operator can
redict suitable CCA for a lead-acid battery.
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ig. 8. The schematic manner for the determination of suitable CCA for a lead-
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. Conclusions

Cold cranking behavior of lead-acid batteries can be modeled
y artificial neural networks (ANNs). Three models were opti-
ized for prediction of a complete CCA test. The models can be

sed successfully for prediction of time-voltage behavior dur-
ng the first 10 s discharge with CCA, for prediction of critical
oltages of 30 s (V30), 60 s (V60), 90 s (V90) and for prediction of
ime of reaching to cutoff voltage of 6 V. The optimized models

ere used for making an EXE file (operating program) for use in
uality control centers of lead-acid industries. The program can
e used by inexpert operators for prediction of battery behavior
t cold discharge of battery at a high current and or for determi-

[
[
[
[
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ation of suitable CCA amount for a lead-acid battery based on
ata at low currents of cold discharge.
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